Explore Related Concepts

density trends periodic table

Best Results From Wikipedia Yahoo Answers Youtube


From Wikipedia

Period (periodic table)

In the periodic table of the elements, elements are arranged in a series of rows (or periods) so that those with similar properties appear in vertical columns. Elements of the same period have the same number of electron shells; with each group across a period, the elements have one more proton and electron and become less metallic. This arrangement reflects the periodic recurrence of similar properties as the atomic number increases. For example, the alkaline metals lie in one group (group 1) and share similar properties, such as high reactivity and the tendency to lose one electron to arrive at a noble-gas electronic configuration. The periodic table of elements has a total of 109 elements.

Modern quantum mechanics explains these periodic trends in properties in terms of electron shells. As atomic number increases, shells fill with electrons in approximately the order shown below. The filling of each shell corresponds to a row in the table.

1s
2s 2p
3s 3p 3d
4s 4p 4d 4f
5s 5p 5d 5f
6s 6p 6d
7s 7p
8s

In the s-block and p-block of the periodic table, elements within the same period generally do not exhibit trends and similarities in properties (vertical trends down groups are more significant). However in the d-block, trends across periods become significant, and in the f-block elements show a high degree of similarity across periods (particularly the lanthanides).

Periods

Seven periods of elements occur naturally on Earth. For period 8, which includes elements which may be synthesized after 2010, see the extended periodic table.

A group in chemistry means a family of objects with similarities like different families.

Chemical elements in the first period

The first period contains fewer elements than any other, with only two, hydrogen and helium. They therefore do not follow the octet rule. Chemically, helium behaves as a noble gas, and thus is taken to be part of the group 18 elements. However, in terms of its nuclear structure it belongs to the s block, and is therefore sometimes classified as a group 2 element, or simultaneously both 2 and 18. Hydrogen readily loses and gains an electron, and so behaves chemically as both a group 1 and a group 17 element.

  • Hydrogen (H) is the most abundant of the chemical elements, constituting roughly 75% of the universe's elemental mass. Ionized hydrogen is just a proton. Stars in the main sequence are mainly composed of hydrogen in its plasma state. Elemental hydrogen is relatively rare on Earth, and is industrially produced from hydrocarbons such as methane. Hydrogen can form compounds with most elements and is present in water and most organic compounds.
  • Helium (He) exists only as a gas except in extreme conditions. It is the second lightest element and is the second most abundant in the universe. Most helium was formed during the Big Bang, but new helium is created through nuclear fusion of hydrogen in stars. On Earth, helium is relatively rare, only occurring as a byproduct of the natural decay of some radioactive elements. Such 'radiogenic' helium is trapped within natural gas in concentrations of up to seven percent by volume.

Chemical elements in the second period

Period 2 elements involve the 2s and 2porbitals. They include the biologically most essential elements besides hydrogen: carbon, nitrogen, and oxygen.