balanced equation magnesium oxide

Best Results From Yahoo Answers Encyclopedia Youtube


From Encyclopedia

oxidation and reduction

oxidation and reduction complementary chemical reactions characterized by the loss or gain, respectively, of one or more electrons by an atom or molecule. Originally the term oxidation was used to refer to a reaction in which oxygen combined with an element or compound, e.g., the reaction of magnesium with oxygen to form magnesium oxide or the combination of carbon monoxide with oxygen to form carbon dioxide. Similarly, reduction referred to a decrease in the amount of oxygen in a substance or its complete removal, e.g., the reaction of cupric oxide and hydrogen to form copper and water. When an atom or molecule combines with oxygen, it tends to give up electrons to the oxygen in forming a chemical bond . Similarly, when it loses oxygen, it tends to gain electrons. Such changes are now described in terms of changes in the oxidation number, or oxidation state, of the atom or molecule (see valence ). Thus oxidation has come to be defined as a loss of electrons or an increase in oxidation number, while reduction is defined as a gain of electrons or a decrease in oxidation number, whether or not oxygen itself is actually involved in the reaction. In the formation of magnesium oxide from magnesium and oxygen, the magnesium atoms have lost two electrons, or the oxidation number has increased from zero to +2. This is also true when magnesium reacts with chlorine to form magnesium chloride. In solution, ferrous iron (oxidation number +2) may be oxidized to ferric iron (oxidation number +3) by the loss of an electron. In the reduction of cupric oxide the oxidation number of copper has changed from +2 to zero by the gain of two electrons. The two processes, oxidation and reduction, occur simultaneously and in chemically equivalent quantities. In the formation of magnesium chloride, for every magnesium atom oxidized by a loss of two electrons, two chlorine atoms are reduced by a gain of one electron each. Oxidation-reduction reactions, called also redox reactions, are most simply balanced in the form of chemical equations by arranging the quantities of the substances involved so that the number of electrons lost by one substance is equaled by the number gained by another substance. In such reactions, the substance losing electrons (undergoing oxidation) is said to be an electron donor, or reductant, since its lost electrons are given to and reduce the other substance. Conversely, the substance that is gaining electrons (undergoing reduction) is said to be an electron acceptor, or oxidant. Common reductants (substances readily oxidized) are the active metals, hydrogen, hydrogen sulfide, carbon, carbon monoxide, and sulfurous acid. Common oxidants (substances readily reduced) include the halogens (especially fluorine and chlorine), oxygen, ozone, potassium permanganate, potassium dichromate, nitric acid, and concentrated sulfuric acid. Some substances are capable of acting either as reductants or as oxidants, e.g., hydrogen peroxide and nitrous acid. The corrosion of metals is a naturally occurring redox reaction. Industrially, many redox reactions are of great importance: combustion of fuels; electrolysis (oxidation occurs at the anode and reduction at the cathode); and metallurgical processes in which free metals are obtained from their ores.


From Yahoo Answers

Question:I did an experiment in chemistry where I formed magnesium oxide salt. However, nitride because part of the formation. What is my new balanced reaction?

Answers:You don't really provide enough information, but I'm guessing you formed MgO by burning it in air: 2 Mg + O2 = 2 MgO Mg also burns in nitrogen, so when you burn it in air, you also get Mg3N2, like this: 3 Mg + N2 Mg3N2

Question:I dont get this question =S? .. all i know is Magnesium oxide is MgO, how would the equation be like? .. MgO -> ? ? ? i think both ur answers are wrong, isnt the equation already balanced? sry i dun understand what the triangle ur using is about, i havent learned about that stuff..

Answers:2Mg^(+2)O^(-2) + heat ------> 2Mg^(0) + O2 When the equation states that heat is added....all you have to do is note it in the balanced equation above the reaction arrow with the change symbol (triangle).....

Question:

Answers:MgCO3(S) + H2SO4(aq) MgSO4(aq) + CO2(g) + H2O(l)

Question:From each question i need a) Type of reaction (ex: single displacement) b) the products c) balanced chemical equation Please help me with as such as you can and Thanks a lot guys 1. Alumin + Hydochloric Acid 2. Calcium hydroxide + nitric acid 3. Potassium chlorate heated 4. Magnesium + sulfur (S8) 5. Ammonium phosphate + alumin Chloride 6. Calcium oxide + water 7. Chromium + water 8. Tin + mercury(I) nitrate 9. Sodium Bromide + silver nitrate 10. hydrogen + oxygen 11. hydogen peroxide 12. fluorine + potasium bromide 13. Carbon dioxide + water 14. calcium chloride + ammonium hydroxide 15. Sodium + chlorine 16. bromine + sodium chloride 17. mercury (II) oxide heated 18. potassium + water 19. strontium carbonate + nitric acid 20. potassium iodide + lead nitrate

Answers:1. Alumin + Hydochloric Acid 2Al + 6HCl = 2AlCl3 + 3H2 [Single displacement] 2. Calcium hydroxide + nitric acid Ca(OH)2 + 2HNO3 = Ca(NO3)2 + 2H2O [Double displacement] 3. Potassium chlorate heated 2KClO3 = 2KCl + 3O2 [decomposition] 4. Magnesium + sulfur (S8) 4Mg + S = Mg4S [synthesis] 5. Ammonium phosphate + alumin Chloride (NH4)3PO4 + AlCl3 = AlPO4 + 3NH4Cl [double replacement] 6. Calcium oxide + water CaO + H2O = Ca(OH)2 [Synthesis] 7. Chromium + water Cr + 6H2O = Cr(H2O)6 [synthesis] 8. Tin + mercury(I) nitrate Sn + 2HgNO3 = Sn(NO3)2 + 2Hg [Single displacement] 9. Sodium Bromide + silver nitrate NaBr + AgNO3 = NaNO3 + AgBr [double replacement] 10. hydrogen + oxygen 2H2 + O2 = 2H2O [Synthesis] 11. hydogen peroxide H2O2 = H2 + O2 [decomposition] 12. fluorine + potasium bromide F + KBr = FBr + K [single displacement] 13. Carbon dioxide + water CO2 + H2O = H2CO3 [Synthesis] 14. calcium chloride + ammonium hydroxide CaCl2 + 2NH4OH = Ca(OH)2 + 2NH4Cl [double replacement] 15. Sodium + chlorine 2Na + Cl2 = 2NaCl [synthesis] 16. bromine + sodium chloride Br2 + 2NaCl = 2NaBr + Cl2 [single replacement] 17. mercury (II) oxide heated 2HgO = 2Hg + O2 [decomposition] 18. potassium + water 2K + 2H2O = 2KOH + H2 [SINGLE replacement] 19. strontium carbonate + nitric acid SrCO3 + 2HNO3 = Sr(NO3)2 + H2CO3 [double replacement] 20. potassium iodide + lead nitrate 2KI + Pb(NO3)2 = 2KNO3 + PbI2 [double replacement] :) whoo! that's a lot.

From Youtube

Chemistry: Balancing Chemical Equations :www.mindbites.com Professor Yee walks you through the process of determining a balanced equation from an unbalanced chemical equation using a method called Balancing by Inspection. There are no hard and fast rules for this method, but Prof. Yee gives you several tips and multiple examples. The first tip Prof. Yee gives you is to start with the molecule or compound that is the most chemically complex. If there is not one compound that stands out, he recommends beginning with the first chemical compound in the equation, as it is generally the one that is being reacted on. He recommends that you leave any pure elements for last. Due to convention, all of the coefficients in a balanced chemical equation must be whole numbers, so Professor Yee shows you how to adjust an equation by multiplying through by the least common multiple. Finally, he reminds you that the number of atoms of each element in the equation must be balanced both on the reactant side and the product side of the equation. Taught by Professor Yee, this lesson was selected from a broader, comprehensive course, Chemistry. This course and others are available from Thinkwell, Inc. The full course can be found at www.thinkwell.com The full course covers atoms, molecules and ions, stoichiometry, reactions in aqueous solutions, gases, thermochemistry, Modern Atomic Theory, electron configurations, periodicity, chemical bonding, molecular geometry, bonding theory, oxidation-reduction reactions, condensed phases ...