Explore Related Concepts

Best Results From Yahoo Answers Encyclopedia Youtube


From Encyclopedia

Einstein, Albert

Born: March 14, 1879 Ulm, Germany Died: April 18, 1955 Princeton, Massachusetts German-born American physicist and scientist The German-born American physicist (one who studies matter and energy and the relationships between them) Albert Einstein revolutionized the science of physics. He is best known for his theory of relativity, which holds that measurements of space and time vary according to conditions such as the state of motion of the observer. Albert Einstein was born on March 14, 1879, in Ulm, Germany, but he grew up and obtained his early education in Munich, Germany. He was a poor student, and some of his teachers thought he might be retarded (mentally handicapped); he was unable to speak fluently (with ease and grace) at age nine. Still, he was fascinated by the laws of nature, experiencing a deep feeling of wonder when puzzling over the invisible, yet real, force directing the needle of a compass. He began playing the violin at age six and would continue to play throughout his life. At age twelve he discovered geometry (the study of points, lines, and surfaces) and was taken by its clear and certain proofs. Einstein mastered calculus (a form of higher mathematics used to solve problems in physics and engineering) by age sixteen. Einstein's formal secondary education ended at age sixteen. He disliked school, and just as he was planning to find a way to leave without hurting his chances for entering the university, his teacher expelled him because his bad attitude was affecting his classmates. Einstein tried to enter the Federal Institute of Technology (FIT) in Zurich, Switzerland, but his knowledge of subjects other than mathematics was not up to par, and he failed the entrance examination. On the advice of the principal, he first obtained his diploma at the Cantonal School in Aarau, Switzerland, and in 1896 he was automatically admitted into the FIT. There he came to realize that he was more interested in and better suited for physics than mathematics. Einstein passed his examination to graduate from the FIT in 1900, but due to the opposition of one of his professors he was unable to go on to obtain the usual university assistantship. In 1902 he was hired as an inspector in the patent office in Bern, Switzerland. Six months later he married Mileva Maric, a former classmate in Zurich. They had two sons. It was in Bern, too, that Einstein, at twenty-six, completed the requirements for his doctoral degree and wrote the first of his revolutionary scientific papers. Thermodynamics (the study of heat processes) made the deepest impression on Einstein. From 1902 until 1904 he reworked the foundations of thermodynamics and statistical mechanics (the study of forces and their effect on matter); this work formed the immediate background to his revolutionary papers of 1905, one of which was on Brownian motion. In Brownian motion, first observed in 1827 by the Scottish botanist (scientist who studies plants) Robert Brown (1773–1858), small particles suspended in a liquid such as water undergo a rapid, irregular motion. Einstein, unaware of Brown's earlier observations, concluded from his studies that such a motion must exist. He was guided by the thought that if the liquid in which the particles are suspended is made up of atoms, they should collide with the particles and set them into motion. He found that the motion of the particles will in time experience a forward movement. Einstein proved that this forward movement is directly related to the number of atoms per gram of atomic weight. Brownian motion is to this day considered one of the most direct proofs of the existence of atoms. Another of Einstein's ideas in 1905 was that under certain conditions radiant energy (light) behaves as if it is made up not of waves but of particles of energy. He presented an equation for the photoelectric effect, in which electrons (particles in the outer portion of an atom that are said to have a "negative" electrical charge equal to that of protons, particles with a larger mass that are said to have a "positive" electrical charge) are ejected from a metal surface that has been exposed to light. Einstein proved that the electrons are not ejected in a constant stream but like bullets from a gun, in units, or "quanta." Although Einstein's famous equation for the photoelectric effect—for which he won the Nobel Prize in physics in 1921—appears obvious today, it was an extremely bold prediction in 1905. Not until years later did R. A. Millikan finally succeed in confirming it to everyone's everyone's satisfaction. The theory of relativity came from Einstein's search for a general law of nature that would explain a problem that had occurred to him when he was sixteen: if one runs at, say, 4 4 miles per hour (6.4 kilometers per hour) alongside a train that is moving at 4 4 miles per hour, the train appears to be at rest; if, on the other hand, it were possible to run alongside a ray of light, neither experiment nor theory suggests that the ray of light would appear to be at rest. Einstein realized that no matter what speed the observer is moving at, he must always observe the same velocity of light, which is roughly 186,000 miles per second (299,274 kilometers per second). He also saw that this was in agreement with a second assumption: if an observer at rest and an observer moving at constant speed carry out the same kind of experiment, they must get the same result. These two assumptions make up Einstein's special theory of relativity. Also in 1905 Einstein proved that his theory predicted that energy (E) and mass (m) are entirely related according to his famous equation, E=mc 2. This means that the energy in any particle is equal to the particle's mass multiplied by the speed of light squared. These papers made Einstein famous, and universities soon began competing for his services. In 1909, after serving as a lecturer at the University of Bern, Einstein was called as an associate professor to the University of Zurich. Two years later he was appointed a full professor at the German University in Prague, Czechoslovakia. Within another year-and-a-half Einstein became a full professor at the FIT. Finally, in 1913 the well-known scientists Max Planck (1858–1947) and Walther Nernst (1864–1941) traveled to Zurich to persuade Einstein to accept a lucrative (profitable) research professorship at the University of Berlin in Germany, as well as full membership in the Prussian Academy of Science. He accepted their offer in 1914, saying, "The Germans are gambling on me as they would on a prize hen. I do not really know myself whether I shall ever really lay another egg." When he went to Berlin, his wife remained behind in Zurich with their two sons; they divorced, and Einstein married his cousin Elsa in 1917. In 1920 Einstein was appointed to a lifelong honorary visiting professorship at the University of Leiden in Holland. In 1921 and 1922 Einstein, accompanied by Chaim Weizmann (1874–1952), the future president of the state of Israel, traveled all over the world to win support for the cause of Zionism (the establishing of an independent Jewish state). In Germany, where hatred of Jewish people was growing, the attacks on Einstein began. Philipp Lenard and Johannes Stark, both Nobel Prize–winning physicists, began referring to Einstein's theory of relativity as "Jewish physics." These kinds of attacks increased until Einstein resigned from the Prussian Academy of Science in 1933. On several occasions Einstein had visited the California Institute of Technology, and on his last trip to the United States he was offered a position in the newly established Institute for Advanced Studies in Princeton, Massachusetts. He went there in 1933. Einstein played a key role (1939) in the construction of the atomic bomb by signing a famous letter to President Franklin D. Roosevelt (1882–1945). It said that the Germans had made scientific advances and that it was possible that Adolf Hitler (1889–1945, the German leader whose actions led to World War II [1939–45]), might become the first to have atomic weapons. This led to an all-out U.S. effort to construct such

Albert Einstein

In the history of the exact sciences, only a handful of men—men like Nicolaus Copernicus and Isaac Newton—share the honor that was Albert Einstein's: the initiation of a revolution in scientific thought. His insights into the nature of the physical world made it impossible for physicists and philosophers to view that world as they had before. When describing the achievements of other physicists, the tendency is to enumerate their major discoveries; when describing the achievements of Einstein, it is possible to say, simply, that he revolutionized physics. Albert Einstein was born on March 14, 1879, in Ulm, but he grew up and obtained his early education in Munich. He was not a child prodigy; in fact, he was unable to speak fluently at age 9. Finding profound joy, liberation, and security in contemplating the laws of nature, already at age 5 he had experienced a deep feeling of wonder when puzzling over the invisible, yet definite, force directing the needle of a compass. Seven years later he experienced a different kind of wonder: the deep emotional stirring that accompanied his discovery of Euclidean geometry, with its lucid and certain proofs. Einstein mastered differential and integral calculus by age 16. Einstein's formal secondary education was abruptly terminated at 16. He found life in school intolerable, and just as he was scheming to find a way to leave without impairing his chances for entering the university, his teacher expelled him for the negative effects his rebellious attitude was having on the morale of his classmates. Einstein tried to enter the Federal Institute of Technology (FIT) in Zurich, Switzerland, but his knowledge of nonmathematical disciplines was not equal to that of mathematics and he failed the entrance examination. On the advice of the principal, he thereupon first obtained his diploma at the Cantonal School in Aarau, and in 1896 he was automatically admitted into the FIT. There he came to realize that his deepest interest and facility lay in physics, both experimental and theoretical, rather than in mathematics. Einstein passed his diploma examination at the FIT in 1900, but due to the opposition of one of his professors he was unable to subsequently obtain the usual university assistantship. In 1902 he was engaged as a technical expert, third-class, in the patent office in Bern, Switzerland. Six months later he married Mileva Maric, a former classmate in Zurich. They had two sons. It was in Bern, too, that Einstein, at 26, completed the requirements for his doctoral degree and wrote the first of his revolutionary scientific papers. These papers made Einstein famous, and universities soon began competing for his services. In 1909, after serving as a lecturer at the University of Bern, Einstein was called as an associate professor to the University of Zurich. Two years later he was appointed a full professor at the German University in Prague. Within another year and a half Einstein became a full professor at the FIT. Finally, in 1913 the well-known scientists Max Planck and Walter Nernst traveled to Zurich to persuade Einstein to accept a lucrative research professorship at the University of Berlin, as well as full membership in the Prussian Academy of Science. He accepted their offer in 1914, quipping: "The Germans are gambling on me as they would on a prize hen. I do not really know myself whether I shall ever really lay another egg." When he went to Berlin, his wife remained behind in Zurich with their two sons; after their divorce he married his cousin Elsa in 1917. In 1920 Einstein was appointed to a lifelong honorary visiting professorship at the University of Leiden. During 1921-1922 Einstein, accompanied by Chaim Weizmann, the future president of the state of Israel, undertook extensive worldwide travels in the cause of Zionism. In Germany the attacks on Einstein began. Philipp Lenard and Johannes Stark, both Nobel Prize-winning physicists, began characterizing Einstein's theory of relativity as "Jewish physics." This callousness and brutality increased until Einstein resigned from the Prussian Academy of Science in 1933. (He was, however, expelled from the Bavarian Academy of Science.) On several occasions Einstein had visited the California Institute of Technology, and on his last trip to the United States Abraham Flexner offered Einstein—on Einstein's terms—a position in the newly conceived and funded Institute for Advanced Studies in Princeton. He went there in 1933. Einstein played a key role (1939) in mobilizing the resources necessary to construct the atomic bomb by signing a famous letter to President Franklin D. Roosevelt which had been drafted by Leo Szilard and E.P. Wigner. When Einstein's famous equation E □ mc2 was finally demonstrated in the most awesome and terrifying way by using the bomb to destroy Hiroshima in 1945, Einstein, the pacifist and humanitarian, was deeply shocked and distressed; for a long time he could only utter "Horrible, horrible." On April 18, 1955, Einstein died in Princeton. From numerous references in Einstein's writings it is evident that, of all areas in physics, thermodynamics made the deepest impression on him. During 1902-1904 Einstein reworked the foundations of thermodynamics and statistical mechanics; this work formed the immediate background to his revolutionary papers of 1905, one of which was on Brownian motion. In Brownian motion (first observed in 1827 by the Scottish botanist Robert Brown), small particles suspended in a viscous liquid such as water undergo a rapid, irregular motion. Einstein, unaware of Brown's earlier observations, concluded from his theoretical studies that such a motion must exist. Guided by the thought that if the liquid in which the particles are suspended consists of atoms or molecules they should collide with the particles and set them into motion, he found that while the particle's motion is irregular, fluctuating back and forth, it will in time nevertheless experience a net forward displacement. Einstein proved that this net forward displacement of the suspended particles is directly related to the number of molecules per gram atomic weight. This point created a good deal of skepticism toward Einstein's theory at the time he developed it (1905-1906), but when it was fully confirmed many of the skeptics were converted. Brownian motion is to this day regarded as one of the most direct proofs of the existence of atoms. The most common misconceptions concerning Einstein's introduction of his revolutionary light quantum (light particle) hypothesis in 1905 are that he simply applied Planck's quantum hypothesis of 1900 to radiation and that he introduced light quanta to "explain" the photoelectric effect discovered in 1887 by Heinrich Hertz and thoroughly investigated in 1902 by Philipp Lenard. Neither of these assertions is accurate. Einstein's arguments for his light quantum hypothesis—that under certain circumstances radiant energy (light) behaves as if it consists not of waves but of particles of energy proportional to their frequencies— were absolutely fundamental and, as in the case of his theory of Brownian motion, based on his own insights into the foundations of thermodynamics and statistical mechanics. Furthermore, it was only after presenting strong arguments for the necessity of his light quantum hypothesis that Einstein pursued its experimental consequences. One of several such consequences was the photoelectric effect, the experiment in which high-frequency ultraviolet light is used to eject electrons from thin metal plates. In particular, Einstein assumed that a single quantum of light transfers its entire energy to a single electron in the metal plate. The famous equation he derived was fully consistent with Lenard's observation that the energy of the ejected electrons depends only on the frequency of the ultraviolet light and not on its intensity. Einstein was not disturbed by the fact that this apparently contradicts James Clerk Maxwell's classic electromagnetic wave theory of light, because he realized that there were good reasons to doubt the universal validity of Maxwell's theory. Although


From Yahoo Answers

Question:Was it addition, subtraction, etc...

Answers:It was 1+1=2, like everybody else.

Question:In science and math Albert Einstien's E=MCsquared is a beautiful equation to them. It was Einstiens attempt to take everything in the universe and explain it with one equation. And he almost did it. Now philosophically speaking what would be your one statement or theory that sums everything up in a nice, neat, beautiful little package? Mine would be , and I know it's kinda bad but, "it will all work out".

Answers:I seriously just have to comment on Shana's equation . . . it is severely trichromosomal. might as well just say l = l.

Question:What were some challenges he had in his life? Also, what kind of math problems did he work on?

Answers:He was a bad pupil at school, he was left-handed (still carried quite a stigma back then) and he was Jewish, which is why he stayed in Princeton and didn't return to Germany after Hitler's rise to power. For mathematical problems he worked in, think theory of relativity as well as the unified field theory. But you'll have to look that up for yourself if you want to understand it.

Question:What do you admire about Einstein why? what do you despise about his life?explain.give specific info.about 5 sentences

Answers:Albert Einstein was a very intelligent man, What I admire about him is the fact that even when teachers told him his theories and math were wrong, he had the stamina and perseverance to move ahead. That I despise is his intelligence caused him to deny God and to despise the heritage of the birthright of Gods chosen people.

From Youtube

ALBERT EINSTEIN RAP :There once was a man, so ahead of his time, that he revolutionized the world with his amazing discoveries. His name was Albert Einstein. He is known around the world for being perhaps the greatest thinker of all time. But some may not know....he is also...the biggest GANGSTER! Albert Einstein: Tyler Short Albert Einstein (voice): Victor Dang (c)DangShort Productions Download the MP3 at: download334.mediafire.com Hello my name is Einstein And I'm a genius If you haven't heard of me Then you must lifeless If you mess with me I show a lot of class All I do, is Drop an a bomb on yo' [boom!] I made the world dope With all of my discoveries In quantum mechanics And my theory on gravity The photoelectric effect Cosmology Name the game I put other scientists in shame I never combed my hair Cuz that's just me Never wore socks Cuz I'm a straight up G When I solve equations I deliver great pwnage When I get the answer I yell...AW HAW OWNAGE!!! I'm da man of the century No one can compare to me Newton and Archimedes Got nothing on me I'm relatively hot Relatively fly My theory of relativity Was better than pi Einstein Had a great mind Pimps all the shawties Cuz he's so fine If you try to beat him You're wastin your time Go smart Go crazy Go dumb Go stupid Oh! Since I left womb I was bustin out equations They don't make sense Except to Asians At the age of 3 My knowledge was pretty fair At the age of 4 I knew that Energy equals mass times the speed of light squared I left my native ...

Albert Einstein Original Footage :Albert Einstein (14 March 1879 18 April 1955) was a German-born theoretical physicist. He is best known for his theory of relativity and specifically massenergy equivalence, expressed by the equation E = mc2. Einstein received the 1921 Nobel Prize in Physics "for his services to Theoretical Physics, and especially for his discovery of the law of the photoelectric effect." Einstein's many contributions to physics include his special theory of relativity, which reconciled mechanics with electromagnetism, and his general theory of relativity, which was intended to extend the principle of relativity to non-uniform motion and to provide a new theory of gravitation. His other contributions include advances in the fields of relativistic cosmology, capillary action, critical opalescence, classical problems of statistical mechanics and their application to quantum theory, an explanation of the Brownian movement of molecules, atomic transition probabilities, the quantum theory of a monatomic gas, thermal properties of light with low radiation density (which laid the foundation for the photon theory), a theory of radiation including stimulated emission, the conception of a unified field theory, and the geometrization of physics. Einstein published over 300 scientific works and over 150 non-scientific works. In 1999 Time magazine named him the "Person of the Century". In wider culture the name "Einstein" has become synonymous with genius, and he has since been regarded as one of the ...